
DCOM, OPC and Performance Issues
Al Chisholm, Intellution Inc

2/3/98
© Intellution Inc. 1998

ALL RIGHTS RESERVED

Abstract

There have been persistent and totally unfounded rumors about performance
problems with Microsoft DCOM and OPC. We suspect that most of these stories are at
best 'wishful thinking' on the part of vendors who have fallen seriously behind the curve
in terms of technology or who are locked into obsolete technologies. This brief paper
presents some hard test results that will show the true performance of OPC and Microsoft
DCOM.

Summary of Results

As you will see from the numbers below, OPC and DCOM performance are more
than adequate for the vast majority of both dedicated and distributed applications when
running on commonly available computers such as a P233. Server performance is
particularly impressive in that a P233 server was able to supply nearly 20,000 values per
second to 4 clients with only 10% CPU load. In real world implementations where
exception based notification is used it is likely that CPU use by the OPC/DCOM
component will be even less.

We were also impressed by the fact that OPC and DCOM were able to provide
300+ transactions per second for the single item requests. This implies that small, simple,
non-optimized applications as might be created for a specific task can also be used
effectively with OPC.

It appears that DCOM and OPC impose a somewhat higher overhead on older
machines such as a P120 but even here the results would be acceptable in most
applications since the 'worst case' scenario still allows such a machine to obtain 4000+
values per second with only 20% CPU use.

You will see that the InProcess model allows for the highest performance. This
would typically be used in a smaller system or between a SCADA, Softlogic or DCS
engine and an I/O driver on one node of a larger multi tier distributed system. This model
allows 10000+ values to be transferred per second using less than 1% of the CPU. This is
clearly more than enough throughput for any conceivable application.

Overview of the Test

As you will see from the discussion of the test client and server programs, this test
is specifically designed to show the total overhead that is specific to COM, DCOM and
OPC. It omits any vendor specific overhead such as COMM port or Device Network
management on the server side or screen or database management on the client side. The
tests were run on In-Process, Local and Remote servers. The Remote tests were run with
1 and with 4 clients. The test results include the machine speeds and CPU use. All
machines were running NT 4.0 Workstation. The network was a very busy 10BaseT
network that was being shared with several hundred additional workstations.

In several cases, tests where run with both multi item and single item reads. Multi
item reads give an accurate assessment of how OPC will perform in practice. Single item
reads allow us to investigate the transaction turnaround time and thus help gauge the
performance of the underlying COM and DCOM protocols. In practice single item reads
would seldom be used by a real application.

Also keep in mine that for each Data Item, OPC transfers a Timestamp and
Quality Mask along with the value. The numbers below for 'per Item rates' in fact count
all 3 of these components as a single item. Other technologies such as DDE would need
to transfer 3 times as many data items to get the same amount of information back to the
client. Keep this in mind when reviewing throughput numbers for other technologies.

The Client Program
 The client is a program called OPCSPEED.EXE. It was written specifically to
evaluate OPC performance. For purposes of this test we are doing synchronous reads
which is essentially a 'worst case' scenario. The client program creates OPC Groups, adds
items and reads floating point data values. It also performs all needed COM memory
management. Thus this client should accurately reflect the OPC and COM specific
overhead in these tests.
 Note that in practice many applications use their OPC Servers in 'exception' mode
where only the data that has actually changed is transferred. Thus the numbers obtained
from this test indicate the maximum rate at which values can be transferred between
client and server. The number of values that can be monitored effectively using OPC in
exception mode is clearly far higher.

The Server Program
 The server in this case is the OPC Sample Server provided by the Foundation and
written by Al Chisholm of Intellution. The code in this server is a simple but very
complete implementation of the COM and OPC interfaces including simulated data
generation. A complete server would need to add only the device or vendor specific
communications logic to replace the simulated data with real data. Thus this server
should accurately reflect the combined OPC and COM specific overhead in these tests.
 Note that the server uses an extremely simple single threaded implementation and
still achieves excellent performance with multiple clients. It is likely that an optimized,
multithreaded implementation could attain even better performance.

The Numbers
This section presents the 'raw numbers'. You will see that in the InProc and Local tests
we purposely set up the test to use all available CPU so as to ascertain the maximum
possible throughput.

In Process Server -1 Client

 Speed Items Reads Time

(sec)
CPU
Use

Items
/sec

Transactions
/sec

Client P233 100 100000 9 100* 1111000 11000
Server n/a

Client P233 1 5000000 22 100* 227000 227000
Server n/a
*Note for this test the client is placed in a tight loop in order to obtain maximum
throughput. What this shows is that for a more typical throughput of 5,000 items per
second for an InProcess Server Model, CPU use would be less than 0.5%.

Local Server -1 Client
 Speed Items Reads Time

(sec)
CPU
Use

Items
/sec

Transactions
/sec

Client P233 100 10000 16 40* 62500 625
Server 60*

Client P233 1 50000 15 50* 3333 3333
Server 50*
*Note for this test the client is placed in a tight loop in order to obtain maximum
throughput. What this shows is that for a more typical throughput of 5,000 items per
second for a Local Server Model, total client and server CPU use would be approx. 8%.

Remote Server -1 Client
 Speed Items Reads Time

(sec)
CPU
Use

Items
/sec

Transactions
/sec

Client P233 100 1000 15 10* 6,666 66
Server P233 12

Client P233 1 3000 9 10* 333 333
Server P233 10
*Note for this test the client is placed in a tight loop in order to obtain maximum
throughput. The node to node transaction time acts as a gate on performance in the
Remote Server Model. What this shows is that for a typical throughput of 5,000 items per
second for a Remote Server Model, client CPU use would be approx 7.5% and Server use
would be approx. 9%.

Remote Server - 4 Clients
 Speed Items Reads Time

(sec)
CPU
Use

Items
/sec

Transactions
/sec

Client 1 P233 100 1000 23 7 4348 43
Client 2 P266 100 1000 22 4 4545 45
Client 3 P120 100 1000 17 25 5882 59
Client 4 P120 100 1000 25 20 4000 40
Server P233 10 18775** 187**
**Note that this includes total server throughput for the combined 4 client load. This test
shows that even a simple single threaded server is capable of providing nearly 20,000
data points per second to 4 clients with approx. 10% CPU use.

